```
#
```

Norking Taper F^{4}
CIRCULATHI COPY
Sea Grant Beasitory Neat Field
And Nixing
E.Y. Sorsell

Wri sea Grent college progrem

SUBMARINE WASTEWATER OUTFALL
 NEAR FIELD FLON DYNAMICS AND MIXING

F.Y. Sorrell

Department of Mechanical and Aerospace Engineering
North Carolina State University

This work was sponsored by the Office of Sea Grant, NOAA, U.S. Department of Commerce, under Grant No. 04-8-MO1-66, and the North Carolina Department of Administration. The U.S. Govermment is authorized to produce and distribute reprints for govermental purposes notwithstanding any copyright that may appear hereon.

Sea Grant College Working Paper 78-4 October, 1978
1051911 Building
N.C. State University

Raleigh, N.C. 27650

ABSTRACT

A model is developed for the flow dynamics and mixing in the near-field of a multiple port outfall diffuser. The model enploys the equations for gross conservation of mass, momentum and buoyancy of the fluid in the discharge jet or plume. These equations are obtained by assuming flow similarity and then integrating over the cross-sectional area of the plume. Two distinct interactions of the discharge jets or plumes are included in the model. These are the interaction of the individual round jets from the diffuser ports and the merging of the plume from either side of the diffuser, over the top of the diffuser. The resulting equations are closed by the "entrainment assumption" and solved numerically. Results provide the velocity, width and dilution of the jet or plume.

Calculations were made for a number of cases where experimental results were availabic. The model gives reasonable agreement with the experiments over a wide range of discharge conditions and over the complete range of flow patterns. In most cases it slightly underestimates the mixing or dilution. Therefore, the model should be useful in determining the minimum dilution that can be expected from any marine outfall.

In view of the extensive analysis on this particular problem, there has been surprisingly little experimental work. Thus, there was not a great deal of data with which to compare the present model. Additional data on the process by which the plumes merge is especially needed. Moreover, while dilution is the parameter of greatest interest to the engineer, it is shown that it is a fairly insensitive measure of flow dynamics in the mixing zone. Therefore, the measurement of some other quantities such as the velocity or plume width would be of more use. This is particularly true when attempting to understand the flow-dynamics in the near-field and when comparing results from different models or situations.

page

Abstract i
List of Figures iii
List of Tables iii
Notation iv
Introduction 1
Model 7
Results 13
Sumary \& Conclusions 17
Appendices 18
I-Conquter Program 19
II- Sample Computer Output for Results Given in Figure 3 28
References 33

Figure 1. Schenatic of round jet interference plan view.
Figure 2. Schematic of two-dimensional plume merging to single vertical plume. End view.

Figure 3. Computer plot of calculated plume geonetry.
Figure 4. Comparison of calculated and measured values of dilution Single round jet
Round jet plus two-dimensional plume Round jet plus two-dinensional plume plus vertical plume

LIST OF TABIES

Table I. Values of entrainment coefficient, α, and spreading ratio, λ, used in the calculations.

Table 2. Comparison of calculated and measured values of plume width and dilution, Measured values are from Liseth (1970)

NOTATION

The following symbols are used in this paper.
$b=$ Jet or plume width.
$F_{o}=$ Densinetric froude number based on port diameter.
$g=$ Acceleration of gravity.
$H_{m}=$ Height of plume use before merging.
$\mathrm{K}=$ Plume translation coefficient.
$L=$ Port spacing (c.f. Figure 1).
$\mathrm{n}=$ Coordinate nomal to two-dinensional plume axis.
$r=$ Coordinate nomal to round jet or plume axis.
$s=$ Coordinate along jet or plume axis.
$u=$ Jet or plume centerline velocity.
$\mathrm{V}_{\mathrm{e}}=$ Entrairment velocity.
$\mathrm{V}_{\mathrm{n}}=$ Plume translation velocity.
x^{-}Horizontal coordinate.
$y=$ Vertical coordinate.
$\alpha=$ Entrainment coefficient.
$\theta=$ Angle of plume axis with horizontal.
$\lambda=$ Spreading coefficient ($\lambda^{2}=$ Schmidt number).
$p_{2}=$ Density of background ocean water.
$\rho(s)=$ Density of fluid in jet or plume.
$\rho_{o}=$ Density of ocean water at discharge point.

INTRODUCTION

The primary purpose of the diffuser, which is located on the end of the outfall pipe, is to mix the effluent being discharged with the ambient or surrounding water as much and as rapidly as possible. The benefits of this mixing are lower concentration of the effluent, even near the outfall, and a diminished health hazard. In addition there is a possible increase in dieoff of enteric microorganisms as a result of their low concentrations. In order to do this a diffuser uses the momentum and buoyancy of the discharged effluent as the driving forces and attempts to direct these forces in a way to produce maximm mixing. These mechanisms are effective only as long as they are the significant forces producing the flow. Therefore, diffuser design can be effective in increasing the mixing in that area near the diffuser where the discharge momentum and buoyancy are still the dominant forces. This region is usually referred to as the "near field" mixing zone. Clearly, once these forces are dissipated, the path and further dilution of the effluent are controlled by the local (or ambient) conditions in the ocean. The purpose of the work reported here is to provide an analytical technique for describing the flow dynamics in the "near-field" mixing zone, and to predict effluent concentrations in this region.

The complete design or feasibility analysis of a marine outfall is obviously quite complicated. In addition to the primary objective of maximum mixing, the diffuser is also subjected to both economic and structural constraints: what is the cost of providing this mixing and will the diffuser withstand all necessary forces? Thus one simply cannot take the approach that a certain dilution is required and then detennine the appropriate configuration. Rather a more productive approach, and the one employed here, is to consider a proposed or probable design and to analyze the mixing and dispersion provided by the specific design. The work begins with the assumption that the design is, or can be made, structually sound and that it is economically practical. Then, after analysis of the "near field" flow dynamics, if it is determined that the design does not provide adequate mixing or that it results in an adverse environmental or public impact, the design must be altered and subsequently re-analyzed.

Before proceeding further with analysis of the flow dynamics and mixing, some consideration mast be given to the discharge of toxic materials from the outfall. No amount of mixing with ocean water, no matter how extensive, can completely offset the continued discharge of toxic materials. Therefore it is necessary to assure that the discharge will not increase, or add to the toxic substances in the ocean. All kinds of water, including rain and drinking water, contain some identifiable (trace) quantities of heavy metals and possibly other toxic materials. This also applies to the ocean, which contains most known toxic substances in very small, but of ten measurable quantites. The usual approach (which is supported here) is to assure that the outfall will not increase the concentration of any toxic material already in the ocean, and that it will not indroduce any new toxic substances.

Generally, with domestic sewage typical of that from eastern North Carolina treatment plants, this can be achieved without difficulty. Barber, et.al. (1977) investigated a possible increase in heavy metal concentration due to the treated effluents of Beaufort, Morehead City, New Bern and Newport. The researchers found no significant amounts of toxic materials. Moreover, toxic materials from new industrial sources are required by the Envirommental Protection Agency (EPA) to be removed by pre-treatment before discharge into a municipal waste treatment facility. Using federal guidelines as a standard (EPA, 1977), it can be shown that all known toxic substances can be reduced to essentially ambient levels by correct outfall design. This conclusion is supported by the recent investigation of Pearce and Smallwood (1978).

Assuming no toxic materials of significance are being released, the major concern then becomes the health effects of enteric microorganisms. These organisms decay with time and, in addition, they are not harnful in sufficiently low concentrations. Because of this, adequate dilution with the ambient ocean water will usually prevent them from causing any environmental impact or becoming a public health hazard. The health hazard can also be removed by sufficient disinfection, but there are indications that most common disinfectants may be toxic themselves. Therefore it is very important that the diffuser provide the maximm mixing possible, and that this mixing and the resulting dilution be accurately predicted. This will enable, among other things, use of a minimam amount of disinfection.

Proceeding the detailed description of the model used for the near-field calculations, a brief discussion of the overall operation and desig̣n of a typical outfall is given. As previously mentioned, the model requires that a specific design be available for the analysis. This means a specific diffuser geometry and the discharge parameters for each of the diffuser ports. Site data required are the depth of the water and the slope of the bottom at the diffuser location, as well as the density of the seawater. Previous work by Sorrell (1978) has attempted to establish typical diffuser configurations for the Southeastern coast and the range of discharge parameters that are likely to be utilized. That work also includes a method for numerical analysis of the internal hydraulics of the diffuser, so that the discharge parameters can be accurately calculated when a specific design is given. The method employs a technique first developed by Brooks (1970), and a excellent sumary and overview of the problem has been given by Koh and Brooks (1975).

As previously mentioned, the near-field mixing zone of the diffuser is that region where the flow dymamics are either completely or partically controlled by the discharge conditions and the diffuser. Conversly the far-field is that region where the mixing and/or flow dynamics are controlled primarily by ocean currents and eddy motion (turbulence). In some situations, high volume thermal discharges also may modify the far-field. Thus, the flow in both the near and far-fields may be at least altered by the discharge. This is partically true for high volume thermal discharges in very shallow water. This is not the situation with wastewater discharges in the ocean, however, and thus the far-field is not considered here. Moreover, design or feasibility
calculations are nomally for 'worse case" conditions or the set of circumstances that produces the least mixing. Usually this is zero current, although the recent work by Nospal and Tatinclaux (1976) has shown that may not always be true for thenmal discharges. Based on these observations the worst case would be in the near-field and with zero background current. The present work provides a calculation procedure for this situation.

In order to better understand various aspects of the model a qualitative description the flow dynamics produced by a typical diffuser with representative discharge parameters is given. The expected diffuser configuration is shown graphically in Figures 1 and 2. As is indicated in Figure 1, the discharge from a multiple port (multi-port) diffuser initally consists of a series of round horizontal jets. These jets are driven outward by the discharge momentum and upward because the wastewater is less dense than the ocean. As the round jets entrain fluid, their diameter increases and ultimately the individual jets begin to interfere with each other. It is generally accepted (Koh and Fan, 1970; Jirka and Harleman, 1973; Shimazi and Davis, 1972) that the individual round jets interact to form a two-dimensional or slot jet. The situation is depicted in Figures 1 and 2, where the resulting flow field, after interaction of the round jets, is a two-dimensional buoyant plume rising from either side of the diffuser pipe. These plumes contimue to entrain fluid as they rise. Because there is a limited volume of background fluid between the two plumes, they move toward each other as required by the conservation of mass of the fluid between the two plumes. If the receiving water is sufficiently deep, the two-dimensional plumes eventually will merge together as they rise thus forming a single vertically rising plune. It is a plume in the true sense, because the horizontal discharge monentum has been canceled and the only driving mechanism is the buoyancy of the less dense effluent. The merging or joining of these two-dimensional plumes has been observed in the field and has been denonstrated by the laboratory experiments of Liseth (1970).

Therefore, although the effluent discharged from a multi-port diffuser begins initially as a series of round horizontal jets, these jets usually interact very quickly to form a two-dimensional plume. The plumes on either side of the diffuser then merge over the diffuser and result in a single vertically rising plume. If the diffuser is located in deep water, the details or fine structure of the flow patterns do not greatly alter the final flow geometry or dilution of the effluent as it reaches the surface (or a terminal level). This has been demonstrated by the numerical experiments of Wallis (1977). And, in fact, Koh and Brooks (1975) have utilized this observation to obtain preliminary estimates of dilution by simply considering only a vertical plume. This is accurate because the discharge monentum is quickly dissipated by turbulent entrainment and, thus, the primary long-term driving mechanism is buoyancy.

Southeastern coastal waters are relatively shallow, however, and thus the round jet interaction and the subsequent merging of the two-dimensional plumes may not have been corpleted before the rising effluent reaches the ocean surface. Here the dilution, velocity and configuration of the discharge plume does depend on the degree of interference that has occured between the jets. Therefore, in southeastern coastal waters an accurate calculation of the mixing requires an analysis of the round jet interference, and of the merging

Figure 2. Schematic of two-dimensional plume merging to
single vertical plume (end view).
and the two-dimensional plume. This paper provides a rather simple model for these two processes, but one that agrees reasonably well with all experimental data available. The procedure thus provides a complete calculation of the nearfield flow patterns or dynamics and the mixing or dilution that would occur from any multi-port diffuser operating in southeastern coastal waters.

The model utilized has its origin in the classical work by Morton, Taylor and Turtier (1956), and by Priestley and Ball (1955). They assume quasisimilarity in the sense that the mean flow is self-similar and that the turbulent entrainment or the turbulence itself can be directly related to the mean flow. In this approach the equations of motion are integrated over the crosssectional area of the jet or plume to give gross-flux equations, for example the equations used by Morton, Taylor and Turner (1956) are conservation of mass, monentun and buoyancy. They close the system of equations by the "entrainment assumption," which asserts that the velocity at which the background fluid is drawn into the jet or plume (the entrainment velocity) by turbulent diffusion can be related to the mean flow parameters. One of the first applications of this approach to outfalls was by Fan (1967) and by Fan and Brooks (1969). There have been numerous other approaches and improvements using basically this method. Morton (1971) gives an excellent discussion of the various different conservation equations that have been used and the particular advantages of each. When using the entraiment assumption the entrainment velocity is usually related to the mean flow velocity at the jet or plume centerline by use of an entrainment coefficient. The entrainment velocity being the entrainment coefficient times the mean velocity at the centerline. The question of the functional relation between the entrairment coefficient and the mean flow quantities has been considered in detail by List and Imberger (1973). At approximately the same time Jirka and Harleman (1973) suggested a specific relation for the twodimensional buoyant jet, based in part on the work of Fox (1970). In the work considered here the discharge momentum is very quickly dissipated, and for most of the calculation the discharge is essentially a plume. Therefore, the present calculation uses a constant value of entraimment coefficient, typical of that reconmended by Brooks (1973) for plumes. The actual values are given in Table 1.
TABIE 1
Round Jets

Values of Entrainment Coefficient α and
Spreading Ratio λ

Used for the Calculations.

When the assumptions and restrictions that follow are considered, the use of a constant entraiment coefficient seens appropriate.

The discharge leaves the diffuser as a series of round jets, and the model starts by applying the procedure to the individual round jets. Initial conditions are the jet diameter and velocity, as computed from the hydraulic analysis (c.f. Sorrel1, 1978). These are corrected for the transition from approximately uniform flow out of the port to the assumed Gaussian velocity profile by using the results of Abbertson et. al. (1950). This results in a velocity profile of the form:

$$
\begin{equation*}
u=u(s) e^{-r^{2} / \lambda b^{2}} \tag{1}
\end{equation*}
$$

where $u=$ centerline velocity, $s=$ distance along the jet or plume axis, $r=$ the coordinate nomal to the plume axis and $b=$ the (local) plume diameter. In order to allow for different rates of spreading (different effective diameters) between mass and momentum, the density profiles are represented by:

$$
\begin{equation*}
\frac{\rho_{a^{-\rho}(s, r)}^{\rho_{o}}}{}=\frac{\rho_{a}-\rho(s)}{\rho_{o}} e-r^{2} /(\lambda b)^{2} \tag{2}
\end{equation*}
$$

where $\rho_{0}=$ the ambient or background density at the discharge location, $\rho_{a}=$ the ambient density, $\rho(s)$ the density of the fluid in the jet or plume, and $\lambda_{1}=$ the ratio between the mass transfer diameter and the momentum transfer diameter of the jet or plume. As such λ_{1}^{2} is the turbulent Schmidt number which is assumed constant and is usually found to be somewhat larger than one.

These profiles are then integrated over the area of the jet or plume to yield gross flux conservation equations. In the present approach equations for conservation of mass, monentum and buoyancy are obtained. Brooks (1973) gives a summary of this calculation and a report by Ditmars (1969) provides a detailed description of the procedure as applied to a single round jet. After integration and some subsequent manipulation, one obtains a set of total iffere ial equations for the centerline velocity, u, the jet or plume diameter, b, the buoyancy $\rho-\rho$ (s), the angle of the jet or plume axis with the horizontal, θ and the x and y coordinates of the axis. These equations are

$$
\begin{align*}
& \frac{d u}{d s}=\frac{2 g \lambda_{1}{ }^{2}(\rho a-\rho) \sin \theta}{u}-\frac{2 \alpha_{1} u}{b} \tag{3}\\
& \frac{d u}{d s}=2 \alpha_{1} \frac{g \lambda_{1}^{2}(\rho a-\rho) \sin \theta}{u^{2}} \tag{4}\\
& \frac{d(\rho a-\rho)}{d s}=\frac{1+\lambda_{1}^{2}}{\lambda_{1}^{2}} \quad \frac{d \rho a}{d y} \sin \theta \frac{2 \lambda_{1}(\rho a-\rho)}{b} \tag{5}\\
& \frac{d \theta}{d s}=\frac{\operatorname{dg} \lambda_{1}^{2}(\rho a-\rho) \cos \theta}{u^{2}} \frac{\rho o}{d s} \tag{6}\\
& \frac{d x}{d s}=\cos \theta \tag{7}\\
& \frac{d y}{d s}=\sin \theta \tag{8}
\end{align*}
$$

Using the previously established initial conditions these equations are then integrated numerically. Two numerical procedures were used. One was an extropolation algorithm developed by Bulirsch and Stoer (1966) and the other was a modified Adams predictor-corrector algorithm developed by Gear (1971). Both algorithms were available as packaged computer sub-routines and were called from computer memory. In the sample program provided in Appendix I, the Bulirsh and Stoer alogrithr is referred to as DREBS and the Gear alogrithm is referred to as DVOGER. The calculation proceeds assuming a round jet until the diameter of the jet, b, equals some fraction of the port spacing L (c.f. Figure 1). At this time the computation switches the model from a round jet to a two-dimensional or slot plume. This approach to round jet interference has been suggested previously by Cedewall (1971) and utilized by Jirka and Harleman (1971). An altemate criteria for transition has been suggested by Koh and Fan (1970) based on equal entrainment rates. While this may be more satisfactory from a philosophical view, the result is essentially the same as the previously proposed criteria. Implict in this procedure is the assumption that the transition from a self-similar round plume to a self-similar two-dimensional plume is quite rapid.

The model thus produces transition from round to slot plumes when the round plume width equals sone fraction of the port spacing. Present calculations were made using equivalence of the two, $\mathrm{b}=\mathrm{L}$. The transition provides a slot plume whose initial width is that of the round plume before transition, which is also the port spacing L. (c.f. Figure 1). The initial centerline velocity and concentration in the slot plume are asma in tose of the round plume immediately before transition. The initial conditions for the slot plume are thus established.

If merging of the slot plumes is not a consideration, the integral technique can then be used to continue the calculation. The equations and procedure have been summarized by Brooks (1973). A detailed description with constant entrainment coefficient is given by Sotil (1971) and with a variable entraiment coefficient by Jirka and Harleman (1973). However, if the merging of the two slot plumes from either side of the diffuser is to be considered, some modification of this procedure is required.

In order to model the merging of the slot plumes, the following mechanism is postulated. Before the round plumes begin to interact, the volume of background fluid between these plumes is basically unrestricted and thus there is very little, if any, tendency for the round plumes on either side of the diffuser to move toward each other. After formation of the twodimensional or slot plume, flow of the background fluid into the region between the plumes can occur only at the ends of the diffuser and is thus severely restricted. Accordingly, merging of the two-dimensional plumes is assumed to begin after the transilion from the round to the two-dimensional plumes. When this occurs the two-dimensional plume is shifted, nomally to the centerline, toward the diffuser. This is because the background fluid between the two plumes is restricted in volume and is being entrained into the plume. Moreover it is argued that the shift of the plumes (toward each other, see Figure 2) is directly related to the entraimment velocity. The
present model assumes that the plumes move toward each other at sone fraction of the entrainment velocity. Implicit in this is the assumption that the entrainment velocity is unchanged by the merging process.

The gross-flux equation for the slot plume is thus modified by inclusion of a velocity normal to the plume axis. This velocity is

$$
\begin{equation*}
V_{n}=K V_{e} \tag{9}
\end{equation*}
$$

where V_{n} is the velocity of the plume nomal to its axis (see Figure 2), V_{e}
 Using the concept of an entraiment coefficient, α_{2}, the equation becomes:

$$
\begin{equation*}
v_{\mathrm{n}}=\mathrm{K} \alpha_{2} \mathrm{u} \tag{10}
\end{equation*}
$$

where u is the centerline velocity. It is reasonable to expect the merging to become more pronomiced (larger shift normal to the plume axis) as the plume rises. Therefore, the original intention was to vary K through the calculation, and to determine the most accurate way to do this from experiments. However, as discussed in the next section, due to a lack of relevant experimental results, simply selecting $K=1$ was all that reasonably could be done.

Again Gaussian profiles are assumed for the velocity and density distributions in the two-dimensional plume. That is the two-dimensional velocity profile is given by

$$
\begin{equation*}
u=u(s) e^{-n^{2} / b^{2}} \tag{11}
\end{equation*}
$$

where $u=$ the center velocity as before, $n=$ the coordinate nomal to the plume axis, and b is the (two-dinensional) plume width. The profile of density deficiency with respect to the ambient density is given by

$$
\frac{\rho_{a}-\rho(s, n)}{\rho_{o}}=\frac{\rho_{a}-\rho(s)}{\rho_{o}} e^{\left.-n^{2} / \lambda^{2} b\right)^{2}}
$$

where the density symbols, ρ, take the same meaning as in equation (2). Again λ_{2}^{2} is the turbulent Sctmidt, but in this case for a two-dimensional plume rather than the round jet or plume. Values that were used for α_{1}, and α_{2} and of λ_{1} and λ_{2} are provided in Table I; these values have been suggested by brooks (1973). Using these expressions the two-dimensional plume is also integrated over its area to yield gross flux conservation equations. These equations, including the terms to account for the merging of the plumes are as follows:

$$
\begin{align*}
& \frac{d u}{d s}=\frac{v 2 g \lambda_{1}^{2}\left(\rho_{\mathrm{a}}-\rho\right) \sin \theta}{\rho_{0}}-\frac{2 \alpha_{\mathrm{I}} \mathrm{u}}{\mathrm{~b}} \tag{12}\\
& \frac{\mathrm{db}}{\mathrm{ds}}=\frac{4 a_{2}}{V_{\mathrm{x}}} \frac{\mathrm{~V} 2 \mathrm{~g} \lambda_{2}(\rho \mathrm{a}-\rho) \mathrm{b} \sin \theta}{\mathrm{u}^{2}} \frac{\rho_{0}}{\rho_{0}} \tag{13}
\end{align*}
$$

$$
\begin{align*}
& \frac{d(\rho a-\rho)}{d s}=\frac{1+\lambda_{2}{ }^{2}}{\lambda_{2}{ }^{2}} \frac{1 / 2}{d y} \operatorname{dy} \sin \theta-\frac{2 a_{2}(\rho a-\rho)}{V \pi \beta} \tag{14}\\
& \frac{d \theta}{d s}=\frac{V 2 g \lambda}{\rho}(\rho \alpha-\rho) \frac{\cos \theta}{u^{2}}+\frac{K \alpha_{2}}{\left(x^{2}+y^{2}\right.} \frac{1 / 2}{2} \tag{15}\\
& \frac{d x}{d s}=\cos \theta-k \alpha_{2} \sin \theta \tag{16}\\
& \frac{d y}{d s}=\sin \theta+k \alpha_{2} \cos \theta \tag{17}
\end{align*}
$$

All symbols in these equations have been defined previously. The terms on the right of equations 15,16 and 17 (enclosed by the square brackets) are the additional terms added to model the merging process.

The trajectory of the two-dimensional plume is computed and the inner and outer edge of the plume calculated at each step. This edge is defined as the width where velocity has decreased to $1 / \mathrm{e}^{2}$ of centerline velocity. The inside edge of the plume is that side closest to the diffuser. If the inside edges of both plumes overlap, the plumes are then assumed to have merged. Because the flow pattern is symetric this occurs at $\mathrm{x}=0$. Therefore the merging criteria is when the inner edge of the plume intersects the y axis. After this occurs the model makes the transition to a single vertically rising plume. The initial conditions for the vertical plume are an initial width of twice the single plume (two individual plumes have merged), and initial velocity and concentration equal that of the two-dimensional plumes before merging. The calculation is then completed, i.e. carried to the surface or to the computed terminal level, as a single vertically rising plume. Nmerically this is a special case of the two-dimensional plume and is quite easily carried out. Figure three shows a graph of the previously defined edges of a plume which was drawn by conputer. The calculation is for $9.15 \mathrm{~cm}(0.30 \mathrm{ft}$.) dimeter ports, spaced 731 cm (24 ft .) apart on each side of the diffuser and with a discharge velocity of $192 \mathrm{~cm} / \mathrm{s}(6.3$ ft.s). The discharge is fresh water into weakly stratified seawater. The seawater density at the diffuser is $1.025 \mathrm{gm} / \mathrm{cm}^{3}$. The transition from round to a two-dimensional plume occurs at a height of 2130 cm (70 ft .) above the bottom. The above parameters were chosen to model the Orange County, California, marine outfall. The actual computer program for this case is given in Appendix I of this report. Results from this program are given in Appendix II.

In sumary the model considers two distinct interactions (1) The interaction of the individual round jets from the diffuser ports to form a two-dimensional plume. The interaction criteria is based on a comparison of the round jet width to spacing or distance between jets. (2) Merging of the two-dimensional plumes rising on either side of the diffuser. Merging criteria is based on overlapping of the inner edge of the plumes.

RESULTS

Because of the large number of parameters that are used in a conplete calculation, it was not considered feasible to give general results either in tabular or graphical form. Rather specific results are given for prescribed discharge conditions, stratification and diffuser parameters (diameter, spacing). One of the first objectives was to compare conputed and experimental results. This was done not only to investigate the validity of the model, but also to try to determine the proper range of values for K as defined by Equation 9. It is rather surprising that, in view of the large quantity of high quality analysis devoted to this problem, only a meager amount of experimental work has been undertaken.

Of the experiments reported in the literature, those by Liseth (1970) seem the only ones suited for the present purposes. These experinents were on the discharge from a model of a multi-port diffuser and were conducted in the laboratory, Liseth (1970) reports results from a large number of experiments in which he measured dilution at the jet or plume centerline. In addition some concentration profiles normal to the axis of the diffuser were also measured and pictures were taken of the flow pattern. These were the only data found from which the location that the plumes merged could be determined. In order to evaluate several choices for K , the numerical model was run in all the cases where there was experimental data for the height at which the plume merged. The results indicated that a value of $K=1$ gave reasonable agreement. Because this was a larger value than expected an additional approach was used.

In a number of the experiments the port spacing (L in Figure 1.) was sufficiently close that the round jets to interact very quickly. In this situation transition into the two-dimensional plume occurs very near the diffuser and the subsequent merging into a single vertical plume should be primarily because of entrairment into the two-dimensional plumes. Thus the merging must occur relatively independently of the round jet interaction. This was modeled numerically by assuming an equivalent two-dimensional plume initally, that is, beginning at the diffuser. This model should merge at least as quickly as the experiments, and thus the value of K determined in this manner should be a minimum value. This value so determined was approximately $\mathrm{K}=1$. On the other hand the maximm value that one would expect from consideration of mass conservation is $\mathrm{k}=1$, therefore this value was chosen for the subsequent calculations.

It is rather surprising that, in order to achieve merging of the twodimensional plumes as rapidly as observed experimentally, they must move toward each other with a velocity at least as large as the entrainment velocity. This observation is relatively independent of the processes that occur in the round jet or plumes, and thus it would appear to validate the assumption that the merging begins only after transition to the two-dimensional plume. It would therefore rule out some motion toward each other before transition to two-dimensional plunes as an explanation of the relatively large value required for K . A possible explanation is the gencration of a pressure field that would pronote merging in addition to that which occurs from simple mass conservation. Clearly the model is too crude and the experiments too sparse to explore this further.

Comparison of Computed and Experimental Values

Diffuser Characteristics

Port Diameter $=0.373 \mathrm{Cm}$.
Port Spacing $=10 \mathrm{Cm}$.
Discharge Velocity $=84 \mathrm{Cm} / \mathrm{s} . \quad$ Froude Number $=24$
Computed Values

The calculation procedure, therefore, gives a reasonable value for the anount of mixing that will occur over the complete range of possible flow patterns. Moreover, when conpared with experiments, the computed values of dilution are consistently slightly lower than the measured values. Because of this, the model should be quite useful in the evaluation of the environmental or public health inpact from any marine outfall. The dilution as computed by the present model should always be conservative or slightly less than that which actually will occur.

SUMMARY AND CONCLUSIONS

The discharged effluent in the near-field or mixing zone from a multiport diffuser was modeled. The model uses the gross-flux equations of mass momentum and buoyancy and is closed by the entrainment assumption. The interaction of the round jets from the individual diffuser ports was modeled by a transition from round jets to a single two-dimensional plume. This was assumed to occur when the width of the jet reaches some fraction of the port spacing. The resulting two-dimensional plumes from either side of the diffuser then merge over the top of the diffuser. This is believed to occur because the volume of background fluid available to be entrained into the plumes is restricted by the plumes themselves. It is modeled by assuming the plimes translate toward each other at some fraction of the entraimment velocity.

Results calculated by this model were compared with previously reported experimental data. It was found that translating the plumes at the entrainment velocity yields good agreement. Although this is a higher velocity than expected from physical reasoning, it does appear to provide the best agreement. This may be because too few experimental data points were available to permit an accurate comparison or because an additional mechanism, other than entrainment of the background fluid, causes the plumes to merge together.

The dilution as computed by the model was compared with experimentally measured values over as wide a range of discharge conditions as experimental data permitted. In view of the extensive analysis on this particular problem, there has been surprisingly 1ittle experimental work. Thus, there was not a great deal of data with which to conpare the model. Additional data on the process by which the plumes merge is especially needed. Moreover, it is concluded that while dilution is the parameter of greatest interest to the engineer, it is a fairly insensitive measure of the flow dynamics in the mixing zone. Therefore the measurement of the velocity profile or possibly some other parameter would by more useful in understanding the details of the near field and in comparing different results.

The present model does give reasonable agreement with the experiments over a fairly wide range of discharge conditions and over the complete range of flow patterns. In most cases it slightly underestimates the dilution. Thus, the model should be a useful tool in helping design engineers determine the minimum mixing that will occur in the discharge from any marine outfall used in southeastern coastal waters.

APPENDIX I
Computer Programi

SUBROJTI NE UFUUN(YP,Tコ,M.OY,PN,INO)

ONコ DY（6）＝DSIN（YB（1，4））

 －．2）
DY（1）＝2＊＊COEFI＊YP（1，3）＊DSIN（YP（1，4））／YP（1，1）－2＊＊ALPHAKYP（1，1）／YP（1
 COEF $2=(1++($ DAMDA＊＊2）$) /(D A M D A * * 2)$
 $O A N D A=O A M D A R$
$I N O=O$ $A L P H A=A L P H A R$
DA：MA＝OAMDAR COMMEN／BLDCK O／WIOT COMMON／BLUCK
GONMN／D－UCK COMMON／EI UCK B／DEN（4），YDEN（4） GMMDVAB：JCK ALGRAV，VISC，VEL，DIA，ALPIHAR，ALPHAS，DAMDAR，DAMDAS DOUNLE゙ PRECISION YF（日，©），TR，JY（o）

APPENDIX II

Sample Computer Output for Graphical results given in Figure 3.

$53+442+5$
$74+4+5127$

 c
0
0
8
\vdots
\vdots
i

REFERENCES

1. Albertson, M.L., Dia, Y.B., Jensen, R.A., \& Rouse, H., (1950) Diffusion of Submerged Jets. Trans. ASCE., Vol. 115 p. 639-697.
2. Barber, R.T., et.al. (1977)

The Distribution of Toxic Metals in Marine Ecosystems as a Result of Sewage Disposal and Natural Process. Water Resources Research Institute of UNC. Rept. No. 123.
3. Brooks, N.H., (1970)

Conceptual Design of Submarine Outfalls - II. Hydraulic Design of Diffusers. W.M. Keck Lab. TM 70-2.
4. Brooks, N.H., (1973)

Dispersion in Hydrologic \& Coastal Environments. Keck Lab. Rep. KH-R-29 (Also EPA Rep. 660/3-73-010).
5. Bulirsch, R., Stoer, J., (1966).

Nemerical Treatment of Ordinary Differential Equations by Extrapolation Methods. Numerische Mathematik, Vol. 8, p. 1.
6. Cederwall, R., (1971)

Buoyant Slot Jets irito Stagnant or Flowing Envirorments C.I.T. Keck Rep. KH-R-25.
7. Ditmars, J.D., (1969)

Computer Program for Round Buoyant Jets into Stratified Ambient Enviromments. C.I.T. Keck Tech Memo 69-1.
8. Environmental Protection Agency (1977)

State and Local Pretreatment Programs - Federal Guidelines, 430/9-$76-017 a$, Office of Water Program Operations. Municipal Construction Division Washington, D.C.
9. Fan, L.N. (1967)

Turbulent Buoyant Jets into Stratified or Flowing Fluids, C.I.T., W.M. Keck Lab. Rep. KH-K-15.
10. Fan, L.N. \& Brooks, N.H., (1969) Nmerical Solutions of Turbulent Buoyant Jet Problems. C.I.T. Keck Rept. $\mathrm{KH}-\mathrm{R}-18$.
11. Fox, D.G., (1970)

Forced Plime in a Stably Stratified Fluid. J. Geophys. Res. 17 p. 68186835.
12. Gear, C.W., (1971)

DIFSUB for Solution of Ordinary Differential Equations. Conm. A.C.M., p. 185-190.
13. Jirka, G., \& Harleman, D.R.F., (1973)

The Mechanics of Subnerged Multiport Diffuser for Buoyant Discharges in Shallow Water. M.I.T. Parsons Rept. 169.
14. Koh, R.C.Y., \& Brooks, N.H., (1975)

Fluid Mechanics of Waste-Water Disposal in the Ocean. Ann. Rev. Fluid Mech. Vol. 7. p. 187-211.
15. Koh, R.C.Y. \& Fan, L.N., (1970) Mathematical Models for the Prediction of Temperature Distribution Resulting from the Discharge of Heated Water in Large Bodies of Water. EPA WPCR Series 16130 DWO.
16. List, E.J., \& Inberger, J., (1973) Turbulent Entrainment in Buoyant Jets \& Plumes. J. Hycl. Div. ASCE. Vol. 99, No. HY 9, Sept. p. 1461.
17. Liseth, P., (1970)

Mixing of Merging Buoyant Jets From a Manifold in Stagnant Receiving Water of Uniform Density. Univ. Cal., Berkeley. HYD. Eng. Lab. TR Hel 23-1.
18. Morton, B.R., Taylor, G.I., \& Turner, J.S., (1956)

Turbulent Gravitational Convection from Maintained \& Instantaneous Sources. Proc. Roy. Soc. London, Ser A. Vol 234, p.1.
19. Morton, B.R., (1971)

The choice of Conservation Equations for Plume Models. J. Geophysics Res., 76, No. 30. p. 7409.
20. Nospal, A. \& Tatinclaux, J., (1976) Design of Alternating Diffuser Pipes. J. Hyd. Div. ASCE vol. 102, No HYA.
21. Pearce, L., \& Snallwood, C., (1978)

Nature of Wastewater Pollutants Discharged into the Ocean. Interim Rept. Ocean Outfall Wastewater Feasibility and Plaming. Center for Marine \& Coastal Studies, NCSU. Raleigh, N.C. March 30.
22. Priestley, R.B., \& Ball, F.K., (1955) Contimuous Convection From an Isolated Source of Heat. Quar. J. Roy. Meterol. Soc., Vol. 81, p. 144.
23. Shirazi, M.A. \& Davis, L.R. (1972) Workbook on Thermal Plume Prediction, Vol. I, EPA WPCR Series 16130.
24. Sorrell, F.Y., (1978)

Outfall Diffuser Hydraulics or Related to North Carolina Coastal Wastewater Disposal. UNC Sea Grant Pub., UNC-SC- 78-01.
25. Sotil, C.A., (1971)

Computer Program for Slot Buoyant Jets into Stratified Ambient Environments. C.I.T. Keck Tech Memo p. 71-2.
26. Wallis, I.G., (1977)

Initial Dilution with Deepwater Diffusers. J. Water Pollution Control Fed. Vol. 99 p. 1621.

